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Abstract. We examine transport properties of a magnetic superlattice with current perpendicular
to the planes. In the limit that the phase-breaking and spin flip scattering lengths are greater than the
system size, a multiple-scattering approach is used to calculate the 4-probe conductance. We show
that by tuning the strength of tunnelling barriers placed between the current and voltage probes
magnetoresistance ratios of arbitrary strength and sign are achievable.

Recent advances in material technology have enabled the fabrication of mesoscopic superlattice
(SL) structures, with well defined dimensions and interfaces, where the SL consists of
alternating magnetic and non-magnetic layers. The exchange coupling of the magnetic layers
through the non-magnetic material gives rise to antiferromagnetic (AF) alignment of adjacent
magnetic layers. When such AF alignment is broken by applying a large magnetic field, a
global ferromagnetic (F) configuration of the multilayer is achieved and the resistance drops
drastically [1–3]. Such functional magnetic materials are the focus of substantial research
both from a technological and fundamental viewpoint, due to a wide range of applications in
magneto-electronics [4], such as read/write heads for high density magnetic storage systems,
and in the miniaturization of magnetic field sensors, such as solid state compasses [5].
All these applications require materials and geometries capable of giving a large signal
(i.e. a large drop in resistance) and high sensitivity (so that only a small magnetic field is
required). Conventional materials, such as the 3D transition metal multilayers, show large giant
magnetoresistance (GMR), but high magnetic fields are necessary to overcome the exchange
coupling, making such systems unsuitable for most applications. Inhomogeneous multilayers
based on polycrystalline alloys [5] require much smaller fields, but show quite small drops in
resistance. Half-metals such as CrO2, in principle can guarantee an infinite GMR [6,7], but to
date a GMR of only 50% has been measured in CrO2 powders at low temperature [9].

Finally, the advent of III-V diluted magnetic semiconductors [10, 11] has opened the
possibility of incorporating spin-valve-like devices in semiconductor technology. Although
the injection of spins into semiconductors by magnetic metallic contacts in the diffusive limit
is shown to give virtually no GMR signal [12], very little is known about all-semiconductor
devices or about the ballistic transport limit.

In this letter we analyse a 4-probe current perpendicular to the plane (CPP) structure [13],
and demonstrate that due to an inherent instability of 4-probe conductance measurements,
an infinite magnetoresistance (IMR) and a GMR of arbitrary strength is achievable. Similar
structures, based on macroscopic anisotropic magnetoresistance materials [14,15], have been
already studied and have shown that very large changes of the 4-probe conductance can be
obtained. Here we argue that similar effects can be achieved in a phase coherent structure, in
which complicate materials issues are avoided.
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We use a general scattering approach to dc transport, developed to describe phase-coherent
transport in dirty mesoscopic structures, based on the fundamental current-voltage relations
derived in [16]. In this letter, we focus on the conductance of the structure shown in figure 1(a),
which comprises a superlattice, with alternating normal and magnetic layers, in contact with
four normal reservoirs at voltages vj (j = 1, . . . , 4). The leads connecting the structure to
reservoirs 1 and 2 carry a current I , whereas leads 3 and 4 carry no current and hence form
the voltage probes. The current/voltage leads are separated by an insulating barrier.
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Figure 1. The hashed area represents the magnetic layers and the clear areas represent normal
regions. The black strips between the leads represent the portion of the variable-height barrier.
(b) shows the equivalent circuit of the structure shown in (a).

In what follows, we consider the zero-temperature, zero-bias limit in which the phase-
breaking and spin-flip scattering lengths are greater than the dimensions of the system. In
this limit, transport properties depend not only on the electronic structure of the magnetic
multilayers, but also on the contacts with external reservoirs. This feature is embodied in the
fundamental current/voltage relation due to Büttiker [16],

Ii =
4∑

j=1

Gijvj (1)

which relates the current Ii from a normal reservoir i to the reservoir voltages (vj ). The
coefficients Gij satisfy

∑4
j=1Gij = ∑4

i=1Gij = 0. In units of 2e2/h, Gii = Ni − Ri and
Gij �=i = −Tij , where Tij is the transmission coefficient from probe j to probe i, Ri is the
reflection coefficient in probe i and Ni is the number of open scattering channels in lead i.
Furthermore, as noted in [16] Gij (H) = Gji(H

∗), where H is the Hamiltonian of the system
and therefore in the presence of a magnetic field, Gij �= Gji .
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Setting I1 = −I2 = I, I3 = I4 = 0 and solving equation (1) for the conductance yields

Ĝ = h

2e2

I

(v3 − v4)
= d

(G42G31 −G41G32)
(2)

where d � 0 is the determinant of the 3 × 3 matrix obtained by removing the third row and
column from the Gij matrix of equation (1). The GMR ratio (G̃) is defined as [3]

G̃ = ĜF − ĜAF

ĜAF

(3)

where ĜF is the conductance when the structure is in the ferromagnetic state and ĜAF is
the conductance for the antiferromagnetic configuration. In the F and AF configurations,
the various transmission and reflection coefficients for the separate spins can be computed
by solving the Schrödinger equation for a simple cubic lattice described by a tight-binding
Hamiltonian with nearest neighbours coupling. In quasi one dimensional geometries involving
only two probes, by combining an efficient recursive Green function approach with a material-
specific s–p–d tight-binding Hamiltonian one can accurately predict the GMR ratio for a range
of materials and layer thickness [18, 19]. For more complex geometries involving several
probes, this is beyond the capabilities of currently available computing resources and therefore
to demonstrate a generic enhancement of the GMR ratio, we analyse a tight-binding model
with a single degree of freedom per spin, as introduced in [20,21]. Each lattice site is labelled
by an index i and possesses a spin degree of freedom σ . The corresponding Schrödinger
equation has the form

Eψσ
i = εσi ψ

σ
i −

∑

j

γijψ
σ
j (4)

where j sums over all neighbours of i. The nearest neighbor hopping elements γij fix the
band-width and εσi determines the band-filling. The separate spin fluids are assigned a spin-
dependent on-site energy εσi . The parameters used in the present calculations are as follows:
in the leads and non-magnetic regions of the SL εσi = 1 and γij = 1; in the magnetic layers
γij = 2 and εσi = 1.45 (3.7) for spin up (down). Following the same method as outlined
in [18] the hopping elements γij joining magnetic-normal sites are chosen to be the geometric
mean of the hopping elements in the magnetic/normal regions.

The dc conductance of eqn.(2) is determined by the multi-channel quantum mechanical
scattering matrix, which in turn can be found from the Green function for a given structure.
The numerical approach involves attaching the scattering region to crystalline semi-infinite
leads, in which the Green functions are superpositions of plane waves, and then using Dyson’s
equation to determine the total Green function [18]. Effectively this procedure requires the
inversion of Hamiltonian describing the scatterer, which for the structure analysed here is a
6080 × 6080 matrix per spin degree of freedom. As we are only interested in the Green
functions on the surface of the structure the inversion is carried out after the Hamiltonian has
been renormalized in real space using an exact decimation technique [22].

As shown in figure 1(a) the structure analysed consists of four crystalline semi-infinite
leads each 40 sites wide. The superlattice consists of five non-magnetic layers alternating
with four magnetic layers, each eight sites wide and 40 sites long. The leads are separated
by barriers, two sites wide and of strength U . These barriers modify the on-site energy εσi
in equation (4) to εσi + U . Hence, varying the magnitude of U alters the transmission and
reflection coefficients of the current/voltage leads. For a barrier two sites wide, figure 2 shows
the dependence on U of the transmission coefficient per open channel, which as expected,
decays exponentially with increasing U .
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Figure 2. The average transmission coefficient per open channel for a 2D tight-binding lattice.
The on-site energy is ε0 and the barrier strength U . The barrier is two lattice sites wide and the
on-site energy is ε0 + U .

Figure 3 shows the dependence of ĜF and ĜAF on barrier strength. We see that ĜAF

increases smoothly as U is increased, whereas ĜF diverges for U ≈ 2.8, and then returns to a
negative constant. This divergence occurs as the transmission coefficient from lead 4 to lead
1 approaches the transmission coefficient from lead 4 to lead 2.

As indicated in figure 1(b), equation (1) can be viewed as an equivalent circuit
representation of the phase coherent structure of figure 1(a). However the elements Gij are
correlated functionals of the scattering potential generated by contact with external leads,
geometry and disorder, and therefore cannot be varied independently. To gain some physical
insight into the origin of this divergence, we consider the case of a symmetric structure, where
G13 = G24, G12 = G34, G14 = G23 and equation (2) reduces to

Ĝ = 2(G43 +G42)(G43 +G41)

G42 −G41
. (5)

From this expression we see that if G42 < G41 then the 4-probe conductance will be negative
and as G42 approaches G41, the conductance diverges. Of course since the quantities Gij are
determined by the quantum mechanical scattering properties of the structure in figure 1, there
is no guarantee that such a condition can be satisfied. The main result of this letter is to show
that such a condition is indeed achievable and can be obtained by a fine tuning of the tunnelling
barriers inserted within the current/voltage probes.

Figure 4 shows the dependence of the GMR ratio on barrier strength calculated using
equation (3). Due to the behavior of the conductance in the ferromagnetic state (ĜF ), the GMR
ratio increases with increasing U , diverges for U ≈ 2.8 giving an infinite magnetoresistance.
Further increasing U causes the GMR ratio to return from −∞ and converges to a negative
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Figure 3. The dependence of the 4-probe conductance’s ĜF and ĜAF on barrier strength, for the
structure shown in figure 1.
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Figure 4. The dependence of the GMR ratio on barrier strength.
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value, of around −110%. It should be noted that this negative GMR is not due to an intrinsic
scattering asymmetry of the materials as measured in [23], but is due to the peculiar spin-
dependent behavior of the 4-probe measurement. IncreasingU further does lead to a divergence
in ĜAF (not shown in figure 3), which, as seen by equation (3), results in a GMR of around
−100%. It is important to point out that the system of figure 1(a) is in principle tunable,
for example by applying a gate electrode giving rise to the barrier potential U in an all-
semiconductor realization of the proposed device. Hence by changing the external gate
potential, arbitrary GMR ratios may be obtained. This uses exactly the same principle as
a Wheatstone bridge, despite the fact that the system described is fully quantum mechanical.

In conclusion, we have shown that due to an inherent instability in 4-probe conductance
measurements of mesoscopic structures an infinite GMR ratio with arbitrary sign is realizable.
To date a great deal of effort has been aimed at optimizing the materials used in GMR devices.
The above results suggest that geometry and external gating may be equally crucial in the
race to obtain inexpensive magnetoresistive devices. This effect is a generic feature of the
4-probe geometry, and the use of a simple single-band tight-binding model is sufficient to
demonstrate the possibility of IMR. Nevertheless more sophisticated material-specific tight-
binding models [18, 24], or ab-initio calculations [25], will be needed to provide quantitative
insights into real device characteristics.

The authors wish to thank P J Wright, A F Volkov, R Raimondi and V I Falko for detailed
discussions. This work is funded by the EPSRC and the EU TMR programme.
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